
Medical code classification based on
free-text clinical notes

Author

Guillaume KUNSCH

Supervised by

Dr Alexander BELIKOV

A Thesis submitted in fulfillment of requirements for the degree of
Master 2 Artificial Intelligence, System, Data

Department of Computer Science
PSL University

2023

Abstract

The automatic classification of medical codes has recently been an active area of research for the

NLP community. The most recent methods have treated this problem as a multi-class multi-

label classification problem and have proposed various architectures to solve it. However, these

architectures have either not exploited the superior performance of pre-trained language models

(RoBERTa) or have not made use of the medical code classification hierarchy.

Consequently, this work aims to reconcile the two approaches by, on the one hand, extracting

relevant textual features that overcome the classical obstacles of automated medical coding (large

label space, long input sequences and domain mismatch between pre-training and fine-tuning) and,

on the other hand, exploiting classifications hierarchy through Poincaré embeddings in hyperbolic

space. In particular, we propose a new hierarchical attention decoder that outperforms the current

SOTA, and we highlight the difficulties encountered when working with non-Euclidean geometry.

Furthermore, unlike most scientific publications, we will focus not only on ICD codes but also

on CPT codes. In addition, thanks to Qantev’s partners, we show that mixing MIMIC benchmark

data with proprietary data leads to better results.

ii

Contents

Abstract i

1 Introduction 1

1.1 Medical coding . 1

1.1.1 ICD codes . 2

1.1.2 CPT codes . 3

1.2 Medical coding in practice . 4

1.3 The need for Automated Medical Coding . 4

1.4 Goal . 4

2 Datasets 5

2.1 MIMIC . 5

2.1.1 MIMIC-III . 6

2.1.2 MIMIC-IV . 6

2.1.3 Preprocessing . 7

2.2 Qantev’s partner data . 8

3 Background on Automated Medical Coding 9

3.1 Background on NLP . 9

3.2 Background on hyperbolic embeddings . 10

3.2.1 Geometry concepts . 10

3.2.2 Hyperbolic geometry . 12

3.3 Background on applications to medical codes . 12

3.4 Own contribution . 13

4 Automated Medical Coding 15

4.1 PLM hierarchical framework . 15

4.1.1 PLM : Pretrained Language Model with segment pooling 15

4.1.2 Label wise attention . 16

4.1.3 Hierarchical embedding . 17

4.2 Experiments . 18

iv

4.2.1 Practical settings . 18

4.2.2 Results . 19

5 Hyperbolic embedding 23

5.1 Poincaré model . 23

5.2 Optimisation . 24

5.3 Experiments . 26

5.3.1 Technical implementation . 26

5.3.2 Results . 26

5.4 Potential use besides Automated Medical Coding 30

Conclusions 33

Bibliography 35

1

1
Introduction

Contents
1.1 Medical coding . 1

1.1.1 ICD codes . 2
1.1.2 CPT codes . 3

1.2 Medical coding in practice . 4
1.3 The need for Automated Medical Coding 4
1.4 Goal . 4

1.1 Medical coding

Medical coding involves transforming medical diagnoses, procedures, services and equipment into
universal medical alphanumeric codes. Diagnoses and procedure codes are derived from documents
in the medical record, such as doctor’s note transcriptions, laboratory and radiology results, etc.
Figure 1.1 presents a case using only text as input but images (CT or MRI scans) could be
used as well. Medical coding professionals ensure that codes are applied correctly during the
medical billing process, which includes extracting information from documentation, assigning the
appropriate codes and creating a claim for reimbursement by insurance companies.

Medical coding has its origins in the public mortality records posted in London in the 19th
century. It was by studying them that John Snow determined the cause of a cholera epidemic
[1]. Medical coding is even more vital today, as the data collected through it is used to improve
overall healthcare. Results are submitted to payers for reimbursement, but code-derived data is
also used to determine utilization, manage risk, identify resource use, build actuarial tables and
support public health action.

Several classification systems coexist, such as APC (Ambulatory Payment Categories), CDT
(Code on Dental Procedures and Nomenclature) and MS-DRG (Medical Severity Diagnosis Related
Groups). For our purposes, we will focus on the two most widely used classifications in the world:
ICD and CPT codes.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: A medical coding model maps an example clinical note to the corresponding ICD
procedure and diagnosis codes. Source:[2]

1.1.1 ICD codes

The International Classification of Diseases (ICD), approved by the World Health Organization
(WHO), is a medical classification list of codes for diagnoses and procedures. ICD codes have
been widely adopted by physicians and other healthcare providers for reimbursement, storage
and retrieval of diagnostic information. Much of what is known about the extent, causes and
consequences of human disease worldwide is based on the use of data classified according to ICD.
It performs a variety of functions in a large part of the world (at least 120 countries) and has been
translated into 43 languages [3]. ICD codes are generally separated between procedures codes
(ICD-PCS) related to the what the physician has performed, and diagnostic codes (ICD-CM)
related to the why he performed it.

Since their creation in 1948, ICD codes have evolved through periodic revisions. In the data
that can be found at the time of writing for ML model training, we can encounter 3 different
versions of the ICD codes:

• ICD-9 codes were created in 1979 and are found today only in legacy architectures. Roughly
18,000 codes are available in this classification [4].

• ICD-10 came into use in 1994. The main differences from previous ICD version are explained
in figure 1.2. There are nearly 20 times as many procedure codes in ICD-10 than in ICD-9.
There are nearly 5 times as many diagnosis codes in ICD-10 than in ICD-9. ICD-10 has
alphanumeric categories instead of numeric ones. The order of some chapters have changed,
some titles have been renamed, and pathologies have been grouped differently.

• ICD-11 has been approved in 2019 by the 72nd WHO assembly [3]. It is better suited to
capture clinically relevant features of cases and to enable information to be summarized for a
variety of purposes. In addition, it is flexible, allowing it to be used in more or less elaborate
modes, and offers built-in support for several languages. It is also designed to ensure that
data coded according to ICD-11 will be comparable with data coded according to ICD-10.

In addition, some countries have adapted the global ICD classification to their own needs,
resulting in an even greater number of classifications. These include ICD-9-CM (USA), ICD-
10-CM/PCS (USA), ICD-10-AM (Australia) and ICD-10-CA (Canada). One of the challenges
of automated medicine is to take into account the evolution (deletion, addition, substitution,
modification) of classifications that may coexist at the same time in electronic health records
(EHR).

ICD classifications have a hierarchical structure. Characters at the beginning of the code give
first-level indications, while those at the end give details of the disease, see 1.3. As such, ICD codes
present a tree-like structure that can be leveraged.

1

1.1. MEDICAL CODING 3

Figure 1.2: Main differences between ICD-9 and ICD-10. Source: National Center for Health
Statistics

Figure 1.3: ICD-10 code structure. Source:[5]

1.1.2 CPT codes

The Current Procedural Terminology (CPT) code set is a procedural code set developed by the
American Medical Association (AMA). Unlike the procedure codes used in ICD, CPT codes are
used for both inpatient and outpatient procedures.

CPT codes are composed of 5 digits numbers that exhibits a hierarchical structure. For instance
codes in range 00100-01999 are related to anesthesia, and inside that range those in range 00100-
00222 are related to head anesthesia. This decomposition goes on recursively.

Similarly to ICD, CPT codes have undergone many iterations. But unlike ICD, there are no
public archives of the past versions. As such, it is harder to compare algorithms performance over
time.

Although its use has been federally regulated in the USA, the CPT copyright has not fallen
into the public domain. Users of the CPT code series must pay a license fee to the AMA. As a
result, research interest has largely focused on ICD, to the detriment of CPT.

https://www.cdc.gov/nchs/index.htm
https://www.cdc.gov/nchs/index.htm

1

4 CHAPTER 1. INTRODUCTION

1.2 Medical coding in practice

Medical coding takes place every time a person consults a healthcare provider. The healthcare
provider reviews the complaint and medical history, makes an expert assessment of what’s wrong
and how to treat the patient, and documents the visit. This documentation is not only the
patient’s permanent record, it’s also how the healthcare provider is paid (although that part can
vary considerably from place to place).

The patient’s diagnosis, test results and treatment must be documented, not only for reimburse-
ment purposes, but also to ensure high-quality care during subsequent visits. Personal information
about a patient’s health follows them through complaints and subsequent treatments, and must be
easily understandable. This is particularly important when considering the hundreds of millions
of visits, procedures and hospitalizations.

Medical coding requires a particular discipline. Medical codes must tell the whole story of the
patient’s encounter with the doctor, and be as accurate as possible to obtain reimbursement for
services rendered. The difficulty lies in the fact that there are thousands of conditions, diseases,
injuries and causes of death. There are also thousands of services provided by providers, and an
equivalent number of drugs and injectable supplies to track. And in healthcare, there are multiple
descriptions, acronyms, names and eponyms for every disease, procedure and tool.

1.3 The need for Automated Medical Coding

Since clinical coding is a non-trivial task for humans, automated clinical coding can be useful for
several reasons. Firstly, the coding process typically involves many layers of abstraction or data
summarization [6], for a variety of support (structured data, text, images). As such, training a
professional medical coders is hard and the resulting coding is expensive. Second, coding is time-
consuming. For instance in Scotland, a NHS medical coder usually codes about 60 cases a day
(equivalent to 7–8min for each case). Even so, there is usually a backlog of cases to be coded,
which can take several months or more (over a year) [7]. Third, manual coding is known to be
prone to errors. Various reasons may account for that such as incompleteness in a patient’s data,
subjectivity in choosing the diagnosis codes, lack of coding expertise, or data entry errors [6].
The average accuracy of coding in the UK was around 83% with a large variance among studies
(50-98%) [8].

According to statistics, the cost of coding errors and the financial investment devoted to im-
proving coding quality are estimated at $25 billion a year in the United States [9].

Automated clinical coding is the idea that clinical coding may be automated by computers
using AI techniques. There has been a surge of articles for automated clinical coding with deep
learning (as the current mainstream approach of AI) in the last few years, more in chapter 3.

1.4 Goal

In this work, we pursue the goal of leveraging state-of-the art deep-learning and NLP techniques
for automated medical coding on both ICD and CPT codes. Our own contribution is more detailed
in chapters 3 and 4.

Besides, we believe that the hierarchy of ICD and CPT is a great asset for such a task that
is often not taken in account. We will try leverage them using non-Euclidean geometry that
is detailed in chapter 3. Still, non-Euclidean embeddings of medical codes goes further than
automated medical coding and could also be used for fraud detection as proposed in chapter 5.

2

2
Datasets

Contents
2.1 MIMIC . 5

2.1.1 MIMIC-III . 6
2.1.2 MIMIC-IV . 6
2.1.3 Preprocessing . 7

2.2 Qantev’s partner data . 8

2.1 MIMIC

MIMIC (Medical Information Mart for Intensive Care) is a large, freely-available database com-
prising deidentified health-related data from patients who were admitted to the critical care units
of the Beth Israel Deaconess Medical Center in Boston, MA.

MIMIC supports a wide range of analytical studies covering epidemiology, improvement of
clinical decision rules and development of digital tools. It has become mainstream in healthcare
research for three reasons: it is freely available to researchers worldwide; it encompasses a diverse
and very large population of intensive care unit (ICU) patients; and it contains highly granular
data, including vital signs, laboratory results and medications.

Although access to the data is free, researchers must complete a recognized course on human
research participant protection, which includes HIPAA (Health Insurance Portability and Account-
ability Act) requirements, and sign a Data Use Agreement, which outlines appropriate data use and
security standards. Several versions of MIMIC have been released over the years, from MIMIC-II
to the latest MIMIC-IV. All versions are stored and managed on PhysioNet’s MIT servers [10].

In our work, we rely heavily on various MIMIC datasets. In this section, we propose to take a
closer look at their composition and the way in which the data was collected. As the data supplied
to the algorithm is absolutely crucial (garbage in-garbage out), it is essential to know where and
how it was collected. Researcher Kate Crawford has shown that this aspect is often overlooked in
AI research, and can lead to ethical problems [11].

2

6 CHAPTER 2. DATASETS

2.1.1 MIMIC-III

MIMIC-III is a database associated with over forty thousand patients who stayed in critical care
units of the Beth Israel Deaconess Medical Center between 2001 and 2012 [12]. The database
includes information such as demographics, vital sign measurements made at the bedside, labora-
tory test results, procedures, medications, caregiver notes, imaging reports and mortality (including
post-hospital discharge).

The MIMIC-III database was populated with data acquired during routine hospital care, so
there was no workload for caregivers or interference with their workflow. Data was downloaded
from a number of sources, including the archives of critical care information systems, hospital
electronic record databases and the Social Security Administration’s Death Master File. Two
different critical care information systems were in place during the data collection period: Philips
CareVue Clinical Information System and iMDsoft MetaVision ICU. These systems were the source
of clinical data [12].

The development of the MIMIC data model involved striking a balance between simplicity of
interpretation and closeness to the ground truth. As such, the model reflects the underlying data
sources, modified over the iterations of the MIMIC database in response to user feedback. Care
was taken not to make any assumptions about the underlying data during the transformations, so
that MIMIC-III faithfully represents the hospital’s raw data.

Before the data was incorporated into the MIMIC-III database, it was first deidentified in
accordance with HIPAA standards using structured data cleansing and date shifting [12]. The
process of de-identifying structured data involved removing the eighteen identifiers listed in HIPAA,
including fields such as patient name, phone number, address and dates. In particular, dates were
randomly shifted into the future for each patient in a consistent manner to preserve intervals,
resulting in stays taking place between the years 2100 and 2200. Time, day of week and approximate
seasonality were preserved during date shifting. The dates of birth of patients aged over 89 were
shifted to mask their real age and comply with HIPAA regulations: these patients appear in the
database with an age of over 300 years.

As a result, MIMIC-III is a relational database consisting of 26 tables. However broadly speak-
ing, 5 tables are used to define and track patient stays: ADMISSIONS, PATIENTS, ICUSTAYS,
SERVICES, and TRANSFERS. The remaining tables contain data associated with patient care,
such as physiological measurements, caregiver observations and billing information.

As for free-text notes, these can take a variety of forms: discharge summaries, nurse’s obser-
vations and hospitalization histories. In line with HIPAA standards, protected health information
has been removed from free text fields, using a rigorously evaluated de-identification system based
on extensive dictionary searches and regular expression pattern matching [12]. For our purposes,
we are mainly interested in the discharge summary and the corresponding ICD and CPT notes.
For our use case, it should be noted that MIMIC-III contains only ICD-9 and CPT codes.

2.1.2 MIMIC-IV

MIMIC-IV builds upon the success of MIMIC-III, and incorporates numerous improvements over
MIMIC-III. MIMIC-IV adopts a modular approach to data organization, highlighting data prove-
nance and facilitating both individual and combined use of disparate data sources. MIMIC-IV is
composed of data related to 300,000 patients for 430,000 admissions [13].

The creation of MIMIC-IV was carried out in three steps [13]:

• Acquisition: data of patients admitted to the emergency department or one of the intensive
care units were extracted from the respective hospital databases. A master patient list was
created containing all medical record numbers corresponding to patients admitted to an

2

2.1. MIMIC 7

intensive care unit or emergency department between 2008 and 2019. All source tables were
filtered on patient rows only in the main patient list.

• Preparation: the data were reorganized to better facilitate retrospective data analysis. This
included denormalizing tables, removing audit trails, and reorganizing into fewer tables. The
purpose of this process is to simplify the retrospective analysis of the database. It is important
to note that no data cleaning steps were performed to ensure that the data reflects a real
clinical data set.

• De-identification: patient identifiers as stipulated by HIPAA have been removed. Patient
identifiers were replaced using a random number, resulting in anonymized integer identifiers
for patients, hospitalizations, and intensive care stays. Structured data was filtered using
lookup tables and allowlists. As in MIMIC-III, a free text deidentification algorithm was
applied to remove personal information from free text. Each instance of personal information
has been replaced with exactly three underscores. Finally, the date and time were randomly
shifted into the future using an offset measured in days.

MIMIC-IV contains only text notes occurring within one year of a patient encounter, where
an encounter is defined as an emergency room or hospital stay. Two categories of free text are
included in the dataset: discharge summary and radiology report. Similar to MIMIC-III, we will
look at medical codes and free text for our study. Nevertheless, MIMIC-IV contains both ICD-
9 and ICD-10, but CPTs are not specified. This requires special attention when processing the
data. In accordance with the novelty of MIMIC-IV, most of the models presented in chapter 3 are
obtained on MIMIC-III and have not been tested on MIMIC-IV.

One of the big hurdles of MIMIC-III and IV for automated medical coding is the highly skewed
distribution of codes frequencies that is displayed on figure 2.1. As such, predicting rarely used ICD
or CPT is one of the significant difficulty of automated medical coding. This issue is exacerbated
for code that is not even present in the original dataset. For instance, MIMIC-III only has less
than 8,000 unique ICD-9 codes [14] compared to the 18,000 unique codes included in the full
classification.

Figure 2.1: The frequency of ICD-9 and ICD-10 codes in MIMIC-IV before pre-processing.
Source:[14]

2.1.3 Preprocessing

In 2018, the article by Mullenbach et al. [15] achieved state-of-the-art results for automated medical
ICD coding on MIMIC-III through CNN and attention mechanism. Their code was open-sourced

2

8 CHAPTER 2. DATASETS

on Github and, as such, the preprocessing they performed was reused by most subsequent papers.

Their preprocessing consisted of lowercasing all text and removing words that only contain out-
of-alphabet characters. Predicting procedures and diagnosis codes were treated as a single task.
The dataset was split into training, validation, and test sets using random sampling, ensuring
that no patient occurred in both the training and test set [15]. Models were evaluated using the
micro and macro average of the area under the curve of the receiver operating characteristics
(AUC-ROC), F1 score, and precision@k.

In 2023, the article by Edin et al. [14] spotted errors in their preprocessing and proposed a
new way of managing it. They noticed non-stratified random sampling realised by Mullenbach
et al. [15] lead to 54 % of the ICD codes in MIMIC-III not being sampled in the test set. This
complicates the interpretation of results since these codes only contribute true negatives or false
positives. Specifically, Edin et al [14] removed codes with fewer than 10 occurrences, doubled
the test set size, and sampled the documents using multi-label stratified sampling. They ensured
that no patient occurred in both the training and test set, preprocessed the text, and considered
procedures and diagnosis codes as a single task as done by Mullenbach et al. [15].

For our work, we will rely on the processing performed by Edin et al [14]. Nonetheless their
processing is done only on ICD codes, so we will adapt it for CPT codes as well. After preprocessing,
the dataset from MIMIC-III is composed of 50,000 examples, where an example is a text sequence
and the associated target codes, and the dataset from MIMIC-IV contains 120,000 examples.

2.2 Qantev’s partner data

In addition to MIMIC data, freely available to researchers, we have access to specific data from
insurers and partners with whom Qantev works.

The data provided by insurers are generally scans of medical reimbursement forms. To make
it usable for our task, we perform various tasks. We detect and analyze the text on these forms
using our custom OCR (Optical Character Recognition) designed in-house. We then select the
most important areas for our task, such as diagnosis, treatment and cause of the disease. If the
identified text is not english, we translate it using the python deep-translator library. We then
format the data in the same way as the MIMIC dataset with the same processing applied to the
text (lowercase letters, word deletion, ..).

In the end, data from insurers represent 937 examples. This is way less than in MIMIC-III and
MIMIC-IV but we will see in chapter 4 their impact is not negligible. Let us also clarify that all
ICD codes in this dataset are ICD-10 and that for each text note we only have one corresponding
ICD. This is different from MIMIC data where for a clinical note we have different codes, generally
between 5 and 20. Finally, the size of the note is also different: in the insurer data we have on
average 70 words per note while we have 1,500 words per note in the MIMIC clinical notes.

3

3
Background on Automated

Medical Coding

Contents
3.1 Background on NLP . 9
3.2 Background on hyperbolic embeddings 10

3.2.1 Geometry concepts . 10
3.2.2 Hyperbolic geometry . 12

3.3 Background on applications to medical codes 12
3.4 Own contribution . 13

3.1 Background on NLP

Natural Language Processing (NLP) has undergone a remarkable transformation in recent years,
primarily driven by the advent of deep learning techniques, with Transformers emerging as a
pivotal architectural innovation. This background section provides a comprehensive overview of
the evolution of NLP, emphasizing the critical role of Transformers, and highlights key milestones
in the field. Throughout, we draw upon seminal works and breakthroughs to elucidate the rich
tapestry of NLP research.

Prior to the deep learning era, NLP heavily relied on handcrafted linguistic rules and statistical
models. The introduction of word embeddings, notably Word2vec by Mikolov et al. ”Efficient
Estimation of Word Representations in Vector Space” [16] marked a significant shift towards deep
learning in NLP. Combined with recurrent neural networks (RNN) [17] and long short-term memory
networks (LSTM) [18], Word2Vec played a pivotal role in modeling natural language.

During the early 2010s, RNNs and LSTMs found applications in various NLP tasks, such as
machine translation, speech recognition, and sentiment analysis. ”Sequence to Sequence Learning
with Neural Networks” by Sutskever et al. [19] demonstrated the effectiveness of LSTMs in machine
translation. Despite their initial successes, RNNs and LSTMs faced challenges with scalability and
parallelization.

3

10 CHAPTER 3. BACKGROUND ON AUTOMATED MEDICAL CODING

Transformers, as introduced in ”Attention Is All You Need” by Vaswani et al. [20], represent a
pivotal moment in NLP. Their self-attention mechanism revolutionized sequence-to-sequence tasks,
enabling the modeling of long-range dependencies efficiently. As a result, they gradually supplanted
RNN-based architectures as the go-to choice for NLP researchers. This architectural shift enabled
the development of models like GPT (Generative Pre-trained Transformer) series and the BERT
embeddings, reshaping the NLP landscape. Specifically, Google’s BERT (Bidirectional Encoder
Representations from Transformers) as detailed in ”BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding” by Devlin et al. [21] laid the foundation for large-scale
pre-trained language models (PLM).

The impact of Transformers extends beyond research. They are now commonplace in wide
range of industry and beyond NLP, since they are now widely used in computer vision as well.
Still, despite their successes, Transformers have inherent limitations, such as their substantial
computational demands, sensitivity to input phrasing, and struggles with commonsense reasoning.

3.2 Background on hyperbolic embeddings

Learning representations of symbolic data such as text, graphs and multi-relational data has become
a central paradigm in machine learning. For instance, word embeddings such as Word2Vec [16],
Glove [22] and FastText [23] are widely used for tasks ranging from machine translation to sentiment
analysis. Typically, the goal of an embedding method is to organize symbolic objects (e.g. words,
entities, concepts) such that their similarity or distance in the embedding space reflects their
semantic similarity. Although embedding methods have proven effective in many applications,
they suffer from a fundamental limitation: their ability to model complex models is inherently
limited by the dimensionality of the embedding space. However, Nickel and Kiela [24] showed
that for graph that present and underlying tree-like structure more efficient representations can be
obtained, not in Euclidean but in hyperbolic space, i.e. space with constant negative curvature.
Informally, hyperbolic space can be thought of as a continuous version of trees and as such it is
naturally equipped to model hierarchical structures. For instance, it has been shown that any finite
tree can be embedded into a finite hyperbolic space such that distances are preserved approximately
[25]. In contrast, Bourgain’s theorem [26] shows that Euclidean space cannot achieve comparably
low distortion for trees, even using an unbounded number of dimensions. Below we propose a quick
introduction to hyperbolic embeddings.

3.2.1 Geometry concepts

A manifold is a topological space (set with collection of open subsets) that looks locally Euclidean,
i.e. for each open subset, we can find a map (called a coordinate map) that maps the subset
to an Euclidean space. For instance, a sphere is 2-D manifold than can be locally maps to R2.
The description of most manifolds requires more than one chart. A specific collection of charts
which covers a manifold is called an atlas. Charts in an atlas may overlap and a single point of a
manifold may be represented in several charts, just as a map of Europe and a map of France may
both contain Paris. Given two overlapping charts, a transition function can be defined which goes
from an open ball in Rn to the manifold and then back to another (or perhaps the same) open ball
in Rn. The resultant map, a change of coordinates, is called a transition map. On figure 3.1 the
open subsets are noted U , the coordinate map ϕ and the transition map τ . A smooth manifold is
a manifold for which transition maps are smooth.

Now that we have defined a manifold, we can define what is a tangent space. The tangent space
of a manifold is a generalization of tangent lines to curves in two-dimensional space and tangent
planes to surfaces in three-dimensional space. On manifold, we can define curve that are smooth
path γ : [0, 1] → M . The velocity of a point p ∈ M on a particular curve defines a tangent vector,
and if we take all the tangent vectors of all curves at point p we get the tangent space TpM . TpM

3

3.2. BACKGROUND ON HYPERBOLIC EMBEDDINGS 11

Figure 3.1: Two charts on a manifold, and their respective transition map. Source: Wikipedia
Atlas

has the same dimension as the manifold and has an Euclidean structure. This Euclidean structures
is of primary importance to define optimisation algorithm on manifolds [27].

Figure 3.2: The tangent space and a tangent vector, along a curve traveling through. Source:
Wikipedia Tangent Space

Let’s now define a Riemannian manifold. Let M be a smooth manifold, p ∈ M be a point,
and TpM be the tangent space to the point p. If M is equipped with a Riemannian metric
gp : TpM × TpM → R+, then the pair (M, g) is called a Riemannian manifold. The Riemannian
metric, a smoothly varying function that induces geometric notions such as length and angle by
defining an inner product on the tangent space, is used to do calculus on manifolds. In particular,
the shortest-distance paths on manifolds are called geodesics. To compute distance functions on a
Riemannian manifold, the metric tensor g is integrated along the geodesic. For example, the norm
of v ∈ TpM is defined as ‖v‖g = gp(v, v)

1
2 . In Euclidean space Rd, each tangent space TpRd is

canonically identified with Rd, and the metric tensor gE is simply the normal inner product.

Finally, we call exponential map the function that maps a point from the tangent space to the
manifold expp : TpM → M and the logarithmic map the function that maps a point from the
manifold to the tangent space logp : M → TpM . For some particular manifolds structure, we have
closed-form equation for these functions.

https://en.wikipedia.org/wiki/Atlas_(topology)
https://en.wikipedia.org/wiki/Atlas_(topology)
https://en.wikipedia.org/wiki/Tangent_space

3

12 CHAPTER 3. BACKGROUND ON AUTOMATED MEDICAL CODING

3.2.2 Hyperbolic geometry

Non-Euclidean geometry was developed in the 19th century. It arises by replacing the parallel
postulate, which states that given a line and a point not on it, it exists exactly one line parallel to
the given line that can be drawn through the point. In spherical geometry no parallel lines exists,
while in hyperbolic geometry an infinite number of parallel line exist.

Figure 3.3: Different type of geometry. Source: Cuemath

As such, hyperbolic geometry is a non-Euclidean geometry which studies spaces of constant
negative curvature. Hyperbolic space are useful in the sense that they can be used as continuous
version of trees. A regular tree with branching factor b has (b+1)bl−1 nodes at level l. Hence, the
number of children grows exponentially with their distance to the root of the tree. In hyperbolic
geometry this kind of tree structure can be modeled easily in two dimensions: nodes that are exactly
l levels below the root are placed on a sphere in hyperbolic space with radius r ∝ l and nodes that
are less than l levels below the root are located within this sphere. This type of construction is
possible as hyperbolic disc area and circle length grow exponentially with their radius. In R2 , a
similar construction is not possible as circle length (2πr) and disc area (πr2) grow only linearly
and quadratically with regard to r in Euclidean geometry.

3.3 Background on applications to medical codes

In recent years, a lot of interest has been granted to automated medical coding based on the
breakthrough of deep learning techniques. Usually, this problem is framed as a multi-class multi-
label text classification model which means that for one document the model predicts various
codes [2]. The usual workflow of models is composed of an encoder to extract text features and a
decoder for code prediction. Some models also leverage auxiliary data such as code descriptions,
code descriptions or medical taxonomies.

Several recent work attempted to approach this task with neural networks. Choi et al. [28]
and Baumel et al. [29] used RNN to encode the EHR data for predicting diagnostic results.
Mullenbach et al. [15] used CNN as encoder. Besides, they introduced an attention decoder

https://www.cuemath.com/geometry/

3

3.4. OWN CONTRIBUTION 13

(Label-wise Attention Network) instead of a direct fully connected layer to that is better suited
for extreme multi-label tasks. Also, Tsai et al. [30] introduced various ways of leveraging the
hierarchical knowledge of ICD by adding refined loss functions. Vu et al. created LAAT [31] in
which they integrated a bidirectional LSTM with an improved label-aware attention mechanism
as decoder. Recently, Cao et al. [32] introduced HyperCore, in which they proposed to train ICD
code embeddings in hyperbolic space to model the hierarchical structure. Additionally, they used
graph neural network to capture the code co-occurrences. To the best of our knowledge, current
state-of-the art is reached by PLM-ICD implemented by Hua et al. [33] in 2022. They rely on
BERT-like encoder (whereas others models mainly rely on Word2Vec embeddings) and use the
same decoder as in LAAT. With this structure they were able to reach a micro-f1 of 50.4% on the
full MIMIC-III test set. Others works that explore different encoders include the one of Zhang et
al. [34] where they used BERT-like architecture that trained from scratch on longer context lenght
(1,024).

In all cases, research has been faced with the following challenges:

• Noisy and lengthy clinical notes: they contain specific medical vocabulary, non-standards
abbrevaiation and often misspellings. Depending on the context they can be long (e.g.
MIMIC) and contain various types of information.

• High-dimensional medical codes: as the label set is large, this problem is usually considered
an extreme classification problem. As explained in chapter 2, classifications are usually made
of at least tens of thousands codes.

• Uneven distribution of codes: Due to the existence of common and rare diseases, the dis-
tribution of medical codes in an EHR system is unbalanced, also known as the long tail
phenomenon. As MIMIC focuses on intensive care units, it aims to be as broad as possible
in the codes collected. Still, a comprehensive dataset for automated classification seems out
of sight for the foreseeable future.

3.4 Own contribution

As we have seen, most recent models focused on either developing an effective interaction between
note representations and code representations ([15], [32]) or focusing on the choice of the note
encoder while not leveraging codes auxiliary data ([34], [33]).

Our goal in this work is to reconcile the two approaches. We will build on the work done on
PLM-ICD and try to incorporate codes hyperbolic hierarchy in the decoder to enhance the model.
As we will in following sections, this initial goal was not reached because of instabilities in codes
hyperbolic embeddings (see chapter 5). Nonetheless, based on the hierarchy of codes that we
tried to leverage in hyperbolic embedding, we propose a new hierarchical decoder that enhances
PLM-ICD capabilities (see chapter 4).

3

14 CHAPTER 3. BACKGROUND ON AUTOMATED MEDICAL CODING

44
Automated Medical Coding

Contents
4.1 PLM hierarchical framework . 15

4.1.1 PLM : Pretrained Language Model with segment pooling 15
4.1.2 Label wise attention . 16
4.1.3 Hierarchical embedding . 17

4.2 Experiments . 18
4.2.1 Practical settings . 18
4.2.2 Results . 19

4.1 PLM hierarchical framework

The task of medical code prediction is formulated as a multi-label classification problem [15]. Given
a clinical note of |d| tokens d =

{
t1, t2, · · · , t|d|

}
in EHR, the goal is to predict a set of medical

codes y ⊆ Y, where Y denotes the set of all possible codes. Typically, the labels are represented
as a binary vector y ∈ {0, 1}|Y|, where each bit yi indicates whether the corresponding label is
presented in the note. Here, we present the original PLM-ICD framework taken from [33] and our
own improvement, the hierarchical embedding.

4.1.1 PLM : Pretrained Language Model with segment pooling

Automated coding is a domain-specific task where the input text consists of clinical notes written
by clinicians. The clinical notes contain many biomedical terms, and understanding these terms
is essential in order to assign ICD codes accurately. While general PLMs are pretrained on large
amount of text, the pretraining corpora usually does not contain biomedical text, not to mention
clinical records. In order to mitigate the domain mismatch problem, we propose to utilize the PLMs
that are pretrained on biomedical and clinical text, e.g. BioBERT [35], PubMedBERT [36], and
RoBERTa-PM [37]. These PLMs are specifically pretrained for biomedical tasks and proven to be
effective on various downstream tasks. We can plug-and-play the domain specific PLMs since their
architectural design and pretraining objective are identical to their general domain counterparts.
This makes our framework agnostic to the type of PLMs, i.e. we can apply any transformer-based

4

16 CHAPTER 4. AUTOMATED MEDICAL CODING

PLMs as the encoder. For this work, we will stick to RoBERTa-PM which is the one used in the
original PLM-ICD paper.

Figure 4.1: PLM-ICD model. Source: [33]

The problem with using a transformer encoder is that we are limited in the number of input
tokens. For example, RoBERTa-PM has a maximum input size of 512 tokens, which is below the
average token count of the MIMIC clinical notes, which is 1500 to 2000 tokens.

In order to tackle the long input text problem, segment pooling is used to surpass the maximum
length limitation of PLMs. The segment pooling mechanism first splits the whole document into
segments that are shorter than the maximum length, and encodes them into segment represen-
tations with PLMs. After encoding segments, the segment representations are aggregated as the
representations for the full document.

More formally, given a document d =
{
t1, t2, . . . , t|d|

}
of |d| tokens, we split it into |s| consecutive

segments si of c tokens:
si = {tj | c · i ≤ j < c · (i+ 1)}

The segments are fed into PLMs separately to compute hidden representations, then concatenated
to obtain the hidden representations of all tokens:

H = concat
(
PLM (s1) , · · · , PLM

(
s|s|
))

(4.1)

The token-wise hidden representations H can then be used to make prediction based on the whole
document.

Note that the token-wise hidden representations H ∈ R|d|×de where |d| is the number of tokens
in input and de corresponds to the size of RoBERTa-PM’s embedding space, i.e. 768 in our case.

4.1.2 Label wise attention

To combat the problem of a large set of labels, PLM-ICD rely on the label-attentive attention
mechanism proposed by [31] to learn label-specific representations that capture important text
fragments relevant to certain labels. After the token-wise hidden representations H are obtained,
the goal is to transform H into label-specific representations with attention mechanism.

The label-aware attention takes H as input and compute |Y| label-specific representations.
This mechanism can be formulated into 2 steps. First, a label-wise attention weight matrix A is
computed as:

Z = tanh(HV)

A = softmax(WZ>)
(4.2)

4

4.1. PLM HIERARCHICAL FRAMEWORK 17

where V and W are linear transforms.

The first linear transformation V ∈ Rde×de is used to mix the output information of each
RoBERTa-PM’ sequence. In fact, the PLM output embedding of the words only has the information
inside the segment. The second transformation W ∈ R|L|×de where |L| is the number of medical
codes to predict, so each row of this matrix corresponds to a medical code and can be interpreted
as the embeddings to be learned from each medical code. Thus the product WZ> is the similarity
score between the embedding matrix of the document and those of each of the labels.

The ith row of A represents the weights of the ith label, and the softmax function is performed
for each label to form a distribution over all tokens. Then, the matrix A is used to perform a
weighted-sum of H to compute the label-specific document representation:

D = AH (4.3)

where the row Di represents the document representations for the ith label.

Finally, we use the label-specific document representation D to make predictions:

pi = sigmoid (〈Li,Di〉) (4.4)

where Li is a vector for the ith label, 〈·〉 represents inner product between two vectors, pi is the
predicted probability of the ith label. Note that the inner product could also be seen as a linear
transform with output size 1. We can then assign labels to a document based on a predefined
threshold t. The training objective is to minimize the binary cross-entropy loss L(y,p) :

− 1

|y|

|y|∑
i=1

(yi log pi + (1− yi) log (1− pi)) (4.5)

It’s interesting to note that the loss chosen here is binary cross-entropy and not categorical
cross-entropy, because the problem is formulated as a multi-class multi-label problem, i.e. each
note has several labels and the number of labels is not defined in advance. Thus, pi is the predicted
probability for label ith. In inference, as well as in the calculation of metrics during learning, we
choose the threshold t for accepting or rejecting the label. The threshold is chosen to maximize
the f1-micro score on the validation set.

4.1.3 Hierarchical embedding

Our most important contribution to the existing PLM-ICD model is the introduction of hierarchical
embedding. Indeed, previous model introduces an embedding for each label in the matrix W ∈
R|L|×de . These embeddings are initialized randomly (Gaussian vectors) and then learned as training
progresses. Nonetheless, along the same lines than hyperbolic embeddings detailed in chapter 5,
we could leveraged the code hierarchy to obtain hierarchical embeddings.

The aim is then to find a module to capture the hierarchy of medical codes in embeddings. For
these embeddings to be coherent, we need the following conditions:

• The tree structure must be respected, i.e 2 codes with the same root must be more similar
than 2 codes from different groups.

• We want the position of the characters to be important: a 9 in the first position must not
have any correlation with a 9 in a second position, and if the parents of two 9s are not
identical, then there must be no correlation in the way these 9s are embedded.

• The complexity of this new module should be of the same order of magnitude as the original
label wise attention.

4

18 CHAPTER 4. AUTOMATED MEDICAL CODING

Let tj = X1X2 and tj = X1X3 be two medical codes with X1 the common part of the 2 codes,
X2 and X3 the part that differs. Let fθ : |d| → R be the function that assigns each code to its
embedding, then there must exist 3 functions gθ,hθ and z such that:

fθ(ti) = z(gθ(X1), hθ(X1X2))

fθ(tj) = z(gθ(X1), hθ(X1X3))
(4.6)

In the following, we’ll use the operation + for z. Besides we will use the various levels where
the code match.

To make it clear let’s take a concrete example with CPT codes, but this process can be applied
to any hierarchy. If we take the CPTs ti = 99764 and tj = 99864, then the previous condition
gives us the following implications:

• gθ(9i) = gθ(9j)

• gθ(99i) = gθ(99j)

• fθ(ti) = gθ(9) + gθ(99) + gθ(997) + gθ(9976) + gθ(99764)

• fθ(tj) = gθ(9) + gθ(99) + gθ(998) + gθ(9986) + gθ(99864)

To add that in the previously existing decoder module, we process as follow. Let |t| be the
number of different CPTs, |t4| the number of possible 4-digit cpt roots (for example: 9975 for 99751
and 99752 ...), |t3| the number of possible 3-digit roots, |t2| the number of possible 2-digit roots,
|t1| the number of possible 1-digit roots.

Let A ∈ R|t|×de , A4 ∈ R|t4|×de , A3 ∈ R|t3|×de , A2 ∈ R|t2|×de and A1 ∈ R|t1|×de be randomly
initialized matrixes that will be the embedding matrices for each node in the tree. Then, to respect
the last algorithm, it’s enough to take W as:

W = PA+ P4A4 + P3A3 + P2A2 + P1A1 (4.7)

where P , P4, P3, P2, P1 are matrices used to duplicate rows in order to comply with the
dimensions. For instance, P2 ∈ R|t|×|t2|. In particular:

(Pl)i,j =

{
1 if σl(j) = σ(i)[0 : l]
0 otherwise

(4.8)

where σ is the function which, starting from the index of all codes, gives the corresponding
code and σl is the function which, starting from the index of all l-digits nodes (|tl|), gives the
corresponding l-digits node.

It’s interesting to note that this method has about the same memory complexity as the original
label wise attention algorithm; we store m ≈ |t|(1 + 1

10 + 1
100 + 1

1000 + 1
10000) embeddings instead

of |t| embeddings.

4.2 Experiments

4.2.1 Practical settings

Several experiments were carried out on the datasets presented in chapter 2.

4

4.2. EXPERIMENTS 19

We carried out experiments on the ICD-9 codes of the MIMIC-III dataset using both versions
of the algorithm, namely the original PLM-ICD and our hierarchical version, called PLM-ICD
hierarchical. The model was also trained on CPT codes, making it one of the first models trained
on CPT codes (we didn’t find any literature applying automated medical coding on CPT codes).
We’ll call these two versions PLM-CPT and PLM-CPT hierarchical.

The model was also trained on the MIMIC-IV dataset for ICD-10 codes in both its versions. In
addition, it was trained on a concatenated dataset comprising MIMIC-IV and Qantev’s partners
data. This approach is akin to fine-tuning on the smallest partner dataset. It was not possible
to fine-tune the model directly, as it needs to know in advance which labels are present in the
dataset. However, the partners dataset contains ICD-10 codes that are not present in the MIMIC-
IV dataset.

In addition, we divided the dataset into training, validation and test sets with the following
ratios: 0.75 for training, 0.1 for validation and 0.15 for test. To better address the multi-label
classification scenario, we used the iterative stratification algorithm to divide the datasets.

Training was performed for around 20 epochs (sometimes less to avoid excessive GPU utiliza-
tion), and a linear decay of the learning rate was applied. We used Adam for optimization with a
target learning rate of 5.10−5. For segment pooling, we split the text into sequences of 128 tokens.
In addition, we used a single Tesla v100 GPU for training. Due to the GPU’s RAM limitation, we
had to limit our batch size to 1. For tracking experiments and metrics, we used Weights&Biases.

4.2.2 Results

Global results for all models and all training set are available on table 4.1.

PLM-CPT vs PLM-CPT hierarchical, on MIMIC-III

We represent f1 macro and f1 micro as the problem is multi-label classification and the micro results
do not take into account the imbalance class. Note that 3 steps represents one epoch. Results
are visible on figure 4.2. As expected, we obtain similar performances for the micro scores, which
shows that our hierarchical model remains at the level of the original model that obtained the best
results on automated medical coding benchmarks. What’s more, for the hierarchical model, we
can see that there is a clear improvement for f1 macro. This improvement on macro score is not
negligible for medical codes, as the large number of labels is recognized difficulties in the field.

(a) f1 micro on validation set over epochs (b) f1 macro on validation set over epochs

Figure 4.2: CPT coding results on MIMIC-III

PLM-ICD vs PLM-ICD hierarchical, on MIMIC-III

Results are visible on figure 4.3. This time, the hierarchical model performed less well for both
metrics. This may be explained by the particular classification of ICD-9, which is a little different

4

20 CHAPTER 4. AUTOMATED MEDICAL CODING

from ICD-10 and a little less structured. To take this into account, we tried a simpler customized
hierarchy, but it seems that this was not sufficient for our model to perform well. Nevertheless,
this proves that the hierarchical decoder cannot be applied to all classifications, whatever their
structure.

(a) f1 micro on validation set over epochs (b) f1 macro on validation set over epochs

Figure 4.3: ICD-9 coding results on MIMIC-III

PLM-ICD on MIMIC-IV vs PLM-ICD on MIMIC-IV + Qantev data

Here, we do not seek to compare the hierarchical model with the original PLM-ICD. Instead, we
analyze whether adding more data to MIMIC can bring better results. The results are shown in
figure 4.4. Interestingly, it seems that adding Qantev’s partners data to MIMIC-IV brings better
results. This may be difficult to explain, as it is highly data-dependent. Most likely, the shorter
text sequences encountered in the additional Qantev’s partner data, together with the frugality of
the codes used per text sequence, allow the model to be more robust.

In addition, it seems that not all metrics reach a plateau, so it might be interesting to run a
longer training or a training with more GPUs to see if this further increases the results.

(a) f1 micro on validation set over epochs (b) f1 macro on validation set over epochs

Figure 4.4: ICD-10 coding results on MIMIC-IV and MIMIC-IV + Qantev data

PLM-ICD vs PLM-ICD hierarchical, on MIMIC-IV + Qantev data

As we have seen that using Qantev data in conjunction with MIMIC-IV brings better results, we
will stick to it for last experiment. Results are displayed on figure 4.5. This time we have better
results with the hierarchical model. This may be explained by the ICD-10 structure which is more
structured than ICD-9. Interestingly, the hierarchical model doesn’t produce better macro results
directly, but only after a few epochs. This underlines the greater training complexity of this model.

4

4.2. EXPERIMENTS 21

(a) f1 micro on validation set over epochs (b) f1 macro on validation set over epochs

Figure 4.5: ICD-10 coding results on MIMIC-IV + Qantev data

Model AUC-ROC precision micro precision macro f1 micro f1 macro
PLM-CPT, MIMIC-III 0.9964 0.587 0.081 0.588 0.069
PLM-CPT hierarchical, MIMIC-III 0.9957 0.583 0.116 0.612 0.116
PLM-ICD, MIMIC III 0.9896 0.609 0.293 0.596 0.264
PLM-ICD hierarchical, MIMIC-III 0.9764 0.528 0.171 0.501 0.152
PLM-ICD, MIMIC-IV 0.9912 0.616 0.152 0.574 0.129
PLM-ICD,
MIMIC-IV + Qantev data 0.9918 0.631 0.173 0.587 0.151

PLM-ICD hierarchical,
MIMIC-IV + Qantev data 0.9919 0.622 0.276 0.569 0.219

Table 4.1: Global results on test set for all models and training set

4

22 CHAPTER 4. AUTOMATED MEDICAL CODING

55
Hyperbolic embedding

Contents
5.1 Poincaré model . 23
5.2 Optimisation . 24
5.3 Experiments . 26

5.3.1 Technical implementation . 26
5.3.2 Results . 26

5.4 Potential use besides Automated Medical Coding 30

5.1 Poincaré model

There exists various models of hyperbolic geometry (Hyperboloid, Beltrami-Klein, Poincaré half-
plane) that are all mathematically equivalent. For our study we will use Poincaré ball model, as
it is well-suited for gradient-based optimization, that we detail below.

Let Bd = {x ∈ Rd, ‖x‖ < 1} be the open d-dimensional unit ball, where ‖·‖ denotes the
Euclidean norm. The Poincaré ball model of hyperbolic space corresponds to the Riemannian
manifold (Bd, gx), i.e. the open unit ball equipped with the Riemannian metric tensor gx =
(2
1−‖x‖2)

2gE where x ∈ Bd and gE denotes the Euclidean metric tensor. Furthermore, the distance
between two points u, v ∈ Bd is given by :

d(u, v) = arccosh
(
1 + 2

‖u− v‖2

(1− ‖u‖2)(1− ‖v‖2)

)
(5.1)

Geodesics in Bd are circles that are orthogonal to the boundary. Due to the negative curvature
of the Poincaré disk in 2 dimensions, the distance of points increases exponentially, relative to their
Euclidean distance, the closer they are to the boundary. Embedding of a regular tree is displayed
on figure 5.1 such that all connected nodes are spaced equally far apart (i.e., all black line segments
have identical hyperbolic length).

It can be seen from equation 5.1, that the distance within the Poincaré ball changes smoothly
with respect to the location of u and v. This locality property of the Poincaré distance is key for

5

24 CHAPTER 5. HYPERBOLIC EMBEDDING

Figure 5.1: Geometry in the Poincaré disk. Source: [24]

finding continuous embeddings of hierarchies. Furthermore, it is symmetric and that the hierar-
chical organization of the space is solely determined by the distance of points to the origin.

Let’s note the Poincaré unit ball corresponds to an hyperbolic space of curvature -1. However,
it can be adapted for other curvatures. If we want to emulate an hyperbolic space of curvature K,
then we need to do the following modifications:

R =
1√
−K

(5.2)

dK(u, v) = R× d(
u

R
,
v

R
) (5.3)

gx = (
2

1− ‖ x
R‖2

)2gE (5.4)

(5.5)

5.2 Optimisation

We build on the framework presented in [24]. To compute Poincaré embeddings for a set of
symbols S, we are then interested in finding embeddings Θ = {θi}ni=1, where θi ∈ Bd is the
embedding of symbol Si. We assume we are given a problem-specific loss function L(Θ) which
encourages semantically similar objects to be close in the embedding space according to their
Poincaré distance. To estimate θ, we then solve the optimization problem:

Θ′ = arg minL(Θ) s.t. ∀θi ∈ Θ : ‖θi‖ < 1 (5.6)

Since the Poincaré ball has a Riemannian manifold structure, we can optimize Equation 5.6 via
stochastic Riemannian optimization methods such as RSGD [27]. In particular, let TθB denote
the tangent space of a point θ ∈ Bd. Furthermore, let ∇R ∈ TθB denote the Riemannian gradient
of L(θ) and let ∇E denote the Euclidean gradient of L(θ). Using RSGD, parameter updates to
minimize Equation 5.6 are then of the form:

θt+1 = expθt
(
− ηt∇RL(θt)

)
(5.7)

where expθt denotes the exponential map onto B at θt and ηt is the learning rate at time t.

To derive the Riemannian gradient from the Euclidean gradient, it is sufficient to rescale ∇E

with the inverse of the Poincaré ball metric tensor, i.e., g−1
θ . Since gθ is a scalar matrix, the

5

5.2. OPTIMISATION 25

inverse is trivial to compute. Furthermore, since Equation 5.1 is fully differentiable, the Euclidean
gradient can easily be derived using standard calculus. As retraction method, we use the 1st
order approximation of exponential map expθ(v) = θ + v which corresponds to the Euclidean
approximation and usually brings better results than the exact operation. In summary, the full
update for a single embedding is then of the form:

θt+1 = θt − ηt
(1− ‖θt‖2)2

4
∇E (5.8)

Mathematically, an embedding is a mapping f : U → V for spaces U ,V with distances dU ,dV .
To evaluate the quality of embeddings either we have a downstream task, either we use some ad-hoc
metrics to quantify the preservation of the graph in continuous space. In the later case, it is usual
to work with two metrics. The first one is the distortion D. For an n points embedding,

D(f) =
1(
n
2

)(∑
u,v∈U :u6=v

|dV (f(u), f(v))− dU (u, v)|
dU (u, v)

)
(5.9)

The best distortion is D(f) = 0, preserving the edge lengths exactly. This is a global metric, as it
depends directly on the underlying distances rather than the local relationships between distances.

Recent work [24] proposed using the mean average precision (MAP) as well. For a graph
G = (V,E), let a ∈ V have neighborhood Na = b1, b2, ..., bdeg(a), where deg(a) denotes the degree
of a. In the embedding f , consider the points closest to f(a), and define Ra,bi to be the smallest
set of such points that contains bi (that is, Ra,bi is the smallest set of nearest points required to
retrieve the ith neighbor of a in f). Then, the MAP is defined to be:

MAP (f) =
1

|V |
∑
a∈V

1

deg(a)

|Na|∑
i=1

|Ra,bi ∩Na|
|Ra,bi |

(5.10)

We have MAP(f) ≤ 1, with 1 as the best case. MAP is not concerned with explicit distances, but
only ranks between the distances of immediate neighbors. It is a local metric.

Based on those 2 metrics we define two different loss functions. The first one, which we will
call geometric loss 5.11 as it is based on all pairwise distances in the graph. By noting the graph
as G and the manifold M , the loss id is defined by:

L(Θ) =
∑

1≤i≤j≤n

∣∣∣∣(dM (θi, θj)

dG(θi, θj)

)2

− 1

∣∣∣∣ (5.11)

The second one, which we will call contrastive loss 5.12 as it is based on sample of negative nodes,
is not based on the graph structure directly but rather on hypernymy relation (a IsAPartOf b). In
that case, embeddings are learned on the transitive closure of the graph (see 5.2b), the hierarchical
structure is not directly visible from the raw data but has to be inferred. Let T = {(u, v)} be the
set of observed hypernyms relations between symbols and N(u, v) = {v′|(u, v′) /∈ T} ∪ {v} the set
of negative sample for u (including v). The loss function is defined as:

L(Θ) =
∑

(u,v)∈T

log exp−d(u,v)∑
v′∈N(u,v) exp−d(u,v′)

(5.12)

We will analyse results for the two losses in this work. Geometric loss 5.11 is based on the
actual distances in the graph and aims to preserve them, while contrastive loss 5.12 is based on
hypernyms relations and just encourages related objects to be closer to each other than objects
for which there is no relationship. As the number of negative nodes can be significant, we usually
perform sampling here.

5

26 CHAPTER 5. HYPERBOLIC EMBEDDING

Besides for evaluation, we will also rely on the rank. For each observed relationship (u, v),
we rank its distance d(u, v) among the ground-truth negative examples for u, i.e., among the set
{d(u, v)|(u, v) /∈ T)}.

5.3 Experiments

Here, we intend to apply the optimisation process detailed in last section to the hierarchy of ICD
and CPT codes.

We collected the codes of the two classifications by scraping websites. For each code, we collect
both it’s description and it’s children. As a result, we are able to retrieve the global tree structure
for each classification.

We encounter various difficulties in our implementation:

• The size of the classifications made the optimisation quite slow with our implementation.
The model requires memory linearly proportional to the number of edges in the dataset. As
a result we mainly iterated on a mock dataset.

• We struggled to reproduce the results displayed in [24]. In particular we found out that
the process was heavily dependent on hyperparameters and prone to instabilities that are
inherent to the Poincaré model for optimisation [38].

• We aimed to implement it from scratch as hyperbolic embeddings could be relevant for tasks
different than automated medical coding at Qantev.

5.3.1 Technical implementation

Non-uniform negative sampling

While this is not precised in the original paper [24], the negative sampling of nodes is not uniform.
Indeed, more common nodes should be more likely to be chosen and therefore far more updates
are likely to be performed on these nodes, affecting the final vectors significantly.

Overfitting

We noticed that, for the contrastive loss almost all of the vectors were too close to the boundary.
This makes sense mathematically, as Poincaré distances near the boundary change extremely fast,
and therefore it is easier for the optimizer to achieve a lower loss. However, this is essentially a
form of overfitting – our goal is to obtain useful representations, not simply achieve the minimum
loss value. It seems, as suggested by the Gensim maintainers [39] that some regularization may
be needed. A mathematical way to enforce this is by adding penalties on the norm of the parent
node in an edge via L2 regularization. Note that L2 regularization is often used for all parameters,
however here we’re only using it for the parent node in a training example.

5.3.2 Results

Below, we present results for the various datasets we used. We rely on 2D embeddings that can be
visually interpreted. When possible we also give distortion, rank and MAP; these metrics take a
lot of time to be calculated (quadratic complexity with the number of nodes) and as such are only
calculated at the end of the training. In all our experiments we used a batch size of 10, a sample

5

5.3. EXPERIMENTS 27

10 negatives nodes, 500 epochs, warm-up of 20 epochs (where the learning rate is 10 times smaller
than the actual value) and a learning rate of 1 for contrastive loss and 3 for geometric loss.

Mock data

The mock data used corresponds to a tree with a top node, a branching factor of 4 and 4 different
levels, see figure 5.2a.

(a) Mock data tree structure

(b) Transitive closure mechanism. Source:
Wikipedia

Figure 5.2: Mock data used

The results obtained can be found on table 5.1 and 5.2, and the visualisations on figure 5.3.

Visually we can see that, as expected, the geometric loss preserves the graph geometry while
the contrastive loss make sure to separate the graph in different clusters. This is also visible in the
metrics displayed on the table 5.1 where the distortion for constrative loss is consistently higher.
Besides, we can see that on constrastive loss the curvature has no to a small effect. This is expected
as the contrastive loss doesn’t rely on curvature but just on maximising distance between negative
nodes.

Interestingly, the geometric loss performs well on both local and global metrics. Besides, the
curvature has a huge impact on it since this loss deals with global structure that is directly con-
cerned by the space geometry. The amount of curvature is actually important enough that Gu et
al. [40] tried to use curvature as a parameter to be optimized in the optimisation model. Let’s note
that we tried curvature lower than −1 but it resulted in many numerical instabilities. Additionally,
a bigger size embedding does not always correlated with better metrics. For this mock data, the
geometric loss seems to bring overall better results.

We display the results on mock data transitive closure on table 5.2 following the approach
adopted in [24] where they only consider transitive closure results. We don’t display the distortion
in this table because the structure of the graph is perturbed by the numerous added edges through
transitive closure mechanism. We can observe that all metrics on the transitive closure graph
are somehow boosted compared to table 5.1. This is because each node gets more neighbors.
Nonetheless, we consider that results on the mock data are more important as they deal directly
with the underlying structure that we care about.

Let’s note as well that the latency differs for each loss. For the contrastive loss, as we need
to sample negative examples at each epoch, we actually train each epoch on a slightly different
dataset. This sampling takes some times in our implementation that results in longer training
(several hours/days depending on the number of nodes). On the contrary, we don’t have such
sampling with the geometric loss. Nonetheless, to use it we need to have distances between all

https://en.wikipedia.org/wiki/Transitive_closure

5

28 CHAPTER 5. HYPERBOLIC EMBEDDING

Models Curvature Metrics Dimension
2 10 50

Contrastive loss

K=-1
Rank 3.18 2.72 2.65
MAP 0.46 0.46 0.46

Distortion 1.41 1.58 1.59

K=-0.5
Rank 3.85 2.84 2.70
MAP 0.43 0.52 0.53

Distortion 2.06 2.33 2.38

K=-0.1
Rank 4.42 2.59 2.44
MAP 0.47 0.54 0.54

Distortion 1.86 2.88 2.83

Geometric loss

K=-1
Rank 4.11 2.00 2.00
MAP 0.30 0.55 0.56

Distortion 0.12 0.02 0.02

K=-0.5
Rank 2.08 1.52 2.04
MAP 0.62 0.96 0.84

Distortion 0.16 0.03 0.03

K=-0.1
Rank 10.6 3.48 3.16
MAP 0.15 0.34 0.35

Distortion 0.23 0.05 0.04

Table 5.1: Embeddings results for mock data

(a) 2D Poincaré
embeddings for
mock data using
contrastive loss

(b) 2D Poincaré
embeddings for
mock data using
contrastive loss with
a curvature K = -0.1

(c) 2D Poincaré em-
beddings for mock
data using geometric
loss

Figure 5.3: Various 2D visualisations of mock data embeddings

pairs (quadratic complexity with numbers of nodes). As the Floyd-Warshall algorithm to compute
them is of cubic complexity, this takes lot of time once but only needs to be performed once.

Mammals dataset

The results we obtained on the mock datatset showed that hyperparameters have a huge impact
on the embeddings (both visually and on metrics). Besides, the results seemed to be lower than
what is presented in the literature. We wanted to benchmark our implementation so we test one
of dataset used in the paper [24]. We used sub-category Mammals from WordNet [41]. Results are
visible on table 5.3 and figure 5.4. We only tested the contrastive loss as this is the only one used
in the paper [24].

Visually, the embeddings looks like expected. Nonetheless, the final metrics are lower than
what was reported in the original paper. For comparison, on this specific subset [24] reported a
MAP of 0.93 and a mean rank of 1.23 on 5 dimensions embeddings. Some other resources [39] also
mentioned difficulties reproducing results.

5

5.3. EXPERIMENTS 29

Models Curvature Metrics Dimension
2 10 50

Contrastive loss

K=-1 Rank 1.78 1.15 1.09
MAP 0.85 0.97 0.97

K=-0.5 Rank 3.49 2.06 1.87
MAP 0.79 0.86 0.88

K=-0.1 Rank 3.87 2.19 2.05
MAP 0.81 0.87 0.87

Geometric loss

K=-1 Rank 5.7 3.3 3.3
MAP 0.54 0.72 0.73

K=-0.5 Rank 1.38 1 1.27
MAP 0.96 1 0.98

K=-0.1 Rank 4.63 1.90 1.72
MAP 0.86 0.91 0.91

Table 5.2: Embeddings results for the mock data hypernyms

Figure 5.4: 2D Poincaré embeddings for Mammals

CPT

For automated medical coding, we care both about global and local metrics, so display results on
all metrics.

Results are displayed on figure 5.5 and table 5.4, 5.5. We see that for CPT the MAP is at best
0.35, and it is 0.71 for CPT hypernyms. That means that on overage, for a particular code, there
are roughly 65 % of his neighbors that shouldn’t be so close to it in the embeddings space. We
deemed that such results were not sufficient to use the hyperbolic embeddings in our model for
automated medical classification presented in chapter 4. At the moment, the engineering required
to incorporate it after the hierarchical attention module is likely to be too complex for an increase
that is expected to be too low. Some engineering enhancements are required as well to improve
the latency.

However, it is interesting to note that here contrastive loss seems to give better results than
geometric loss. This may be explained by the fact that for trees with many nodes, geometric

Models Curvature Metrics Dimension
2 10 50

Contrastive loss K=-1 Rank 25.3 27.5 23.5
MAP 0.38 0.69 0.71

Table 5.3: Embeddings results for Mammals hypernyms

5

30 CHAPTER 5. HYPERBOLIC EMBEDDING

Figure 5.5: 2D Poincaré embeddings for CPT codes

Models Curvature Metrics Dimension
2 10 50

Contrastive loss K=-1
Rank 125 23.7 12.9
MAP 0.07 0.33 0.35

Distortion 0.35 0.39 0.40

Geometric loss K=-1
Rank 3950 3280 3245
MAP 1e-3 0.03 0.05

Distortion 0.23 0.19 0.18

Table 5.4: Embeddings results for CPT

loss, which relies on all pairs, has difficulty optimizing them all at the same time. Indeed, in our
experiments, we found that there is a part at the beginning of the training where the loss seems to
be stable, but after a few hundred epochs, it suddenly decreases and then reaches another slowly
decreasing state.

Besides it should be noted that the worse distortion obtained on contrastive loss here are order
of magnitude lower than what was obtained in 5.1. Our interpretation is that this is simply a
consequence of the number of nodes and the structure of the tree. Indeed, as the tree grows, the
distance between points tends to be higher on average, but as the contrastive loss creates different
groups of points that need to be further apart, the average distance between points is also high.
For us, the fact that we get better distortion here is a purely statistical fact and should not be
interpreted as an inherent property of contrastive loss.

ICD

The ICD classification is composed of 100,000 codes while the CPT classification is composed of
10,000 codes. Because of the latency encountered for CPT, we didn’t launch any embeddings on
ICD yet.

5.4 Potential use besides Automated Medical Coding

Our initial idea was to used the hyperbolic embeddings to guide automated medical coding, in
the same way as Hypercore does [32]. This goal was not reached because of the high instability
encountered with Poincaré model. The only off-the-shelf implementation that we found was the
one of Gensim [42], but even in that case the results we obtained were highly unstable. Besides, it
seems this part of Gensim is not really maintained as of today.

5

5.4. POTENTIAL USE BESIDES AUTOMATED MEDICAL CODING 31

Models Curvature Metrics Dimension
2 10 50

Contrastive loss K=-1 Rank 317 18.8 16.6
MAP 0.25 0.65 0.71

Geometric loss K=-1 Rank 1425 320 282
MAP 0.22 0.45 0.56

Table 5.5: Embeddings results for CPT hypernyms

Besides, the encouraging results showcased in [24] only concerns the transitive closure graph
that is not of primary interest in our case. Still, as seen in section 4, inspired by the idea of
hyperbolic embeddings we implemented a state-of-the-art hierarchical decoder.

Nevertheless, it is essential to resolve the obstacles we have encountered here, as hyperbolic
embeddings could be relevant to different use cases in healthcare. An interesting framework would
be that of fraud detection. Indeed, a standard method of fraud detection is code inconsistency
on a claim. For example, an ICD indicating ”toothache” does not generally correspond to a CPT
indicating ”pregnancy test”. The standard method for detecting this type of fraud is statistical
testing of code co-occurrence. We could take advantage of the hyperbolic space by integrating
ICD and CPT into the same space on the basis of their co-occurrence. The closer two codes are in
hyperbolic space, the more likely they are to appear together in the same application. The further
apart they are, the more likely they are to be inconsistent. Nevertheless, this method relies on
integration in a space with non-constant curvature, which is studied in [40].

5

32 CHAPTER 5. HYPERBOLIC EMBEDDING

Conclusion and future work

In this work, we identify the main challenges of applying automatic medical coding, including long

text input, large label set and mismatched domain, for both ICD and CPT classifications. We

have integrated the previous state-of-the-art by adding a new hierarchical attention module to

PLM-ICD. This new technique considerably improves results on rare medical codes.

In addition, we have shown that by incorporating a small amount of real data, it is possible

to achieve better results on MIMIC-IV with minimal adaptation. The main bottleneck being the

collection of additional data.

With regard to Poincaré embeddings, although we were unable to achieve our initial goal, we

have highlighted the obstacles that still need to be overcome for them to become commonplace in

deep learning (the main one being they are not, at the time of writing, part of any mainstream

deep learning framework). In particular, we have shown that to critically assess the quality of

embeddings without having downstream tasks, the full set of rank, MAP and distortion metrics is

required to obtain the full embedding picture. In addition, 2D embeddings also provide a visual way

of ensuring that embeddings retain hierarchy. Indeed, we are not directly interested in minimizing

geometric or contrastive loss, but rather in obtaining robust embeddings for downstream tasks.

We hope that this work can pave the way for research into harnessing the great potential of

automated medical coding. Research in this area is still active, and some future lines of work could

include:

• Find new techniques to take into account the evolution of medical codes, from ICD-9 to

ICD-11. To our knowledge, there is yet no literature on this subject.

• Find new techniques to enable the model to predict codes it has never seen in the training

data. An interesting idea might be to have a tokenizer specifically for medical codes that

aims to take into account the code hierarchy.

• Study different models of hyperbolic geometry (e.g. the Lorentz model) to reduce the insta-

bility encountered with the Poincaré model.

34 CONCLUSIONS

Bibliography

[1] J. Snow, “On the mode of communication of cholera,” Edinburgh medical journal, vol. 1,
no. 7, p. 668, 1856.

[2] S. Ji, W. Sun, H. Dong, H. Wu, and P. Marttinen, “A unified review of deep learning for
automated medical coding,” arXiv preprint arXiv:2201.02797, 2022.

[3] J. E. Harrison, S. Weber, R. Jakob, and C. G. Chute, “Icd-11: An international classification
of diseases for the twenty-first century,” BMC medical informatics and decision making,
vol. 21, no. 6, pp. 1–10, 2021.

[4] W. H. Organization and N. C. for Health Statistics (US), The International Classification of
Diseases, 9th Revision, Clinical Modification: Procedures: tabular list and alphabetic index.
Commission on Professional and Hospital Activities., 1980, vol. 3.

[5] S. Eslami, P. Adorjan, and C. Meinel, “Sehmic: Semi-hierarchical multi-label icd code clas-
sification.,” in CLEF (Working Notes), 2020.

[6] E. Coiera, Guide to Health Informatics (3rd ed.). CRC Press, 2015. [Online]. Available:
https://doi.org/10.1201/b13617.

[7] H. Dong, M. Falis, W. Whiteley, et al., “Automated clinical coding: What, why, and where
we are?” NPJ digital medicine, vol. 5, no. 1, p. 159, 2022.

[8] E. M. Burns, E. Rigby, R. Mamidanna, et al., “Systematic review of discharge coding accu-
racy,” Journal of public health, vol. 34, no. 1, pp. 138–148, 2012.

[9] D. Lang, “Consultant report-natural language processing in the health care industry,” Cincin-
nati Children’s Hospital Medical Center, Winter, vol. 6, 2007.

[10] A. L. Goldberger, L. A. Amaral, L. Glass, et al., “Physiobank, physiotoolkit, and physionet:
Components of a new research resource for complex physiologic signals,” Circulation, vol. 101,
no. 23, e215–e220, 2000.

[11] K. Crawford, The atlas of AI: Power, politics, and the planetary costs of artificial intelligence.
Yale University Press, 2021.

[12] A. E. W. Johnson, T. J. Pollard, L. Shen, et al., “Mimic-iii, a freely accessible critical care
database,” Scientific data, vol. 3, no. 1, pp. 1–9, 2016.

[13] A. Johnson, L. Bulgarelli, T. Pollard, S. Horng, L. Celi, and R. Mark, Mimic-iv (version
1.0), 2020.

[14] J. Edin, A. Junge, J. D. Havtorn, et al., “Automated Medical Coding on MIMIC-III and
MIMIC-IV: A Critical Review and Replicability Study,” in Proceedings of the 46th Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval,
Taipei, Taiwan: ACM Press, 2023, isbn: 978-1-4503-9408-6. doi: 10.1145/3539618.3591918.

[15] J. Mullenbach, S. Wiegreffe, J. Duke, J. Sun, and J. Eisenstein, “Explainable prediction of
medical codes from clinical text,” arXiv preprint arXiv:1802.05695, 2018.

[16] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations
in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[17] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,
no. 8, pp. 1735–1780, 1997.

[19] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,”
Advances in neural information processing systems, vol. 27, 2014.

https://doi.org/10.1201/b13617
https://doi.org/10.1145/3539618.3591918

36 BIBLIOGRAPHY

[20] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[21] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional
transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[22] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word represen-
tation,” in Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), 2014, pp. 1532–1543.

[23] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with subword
information,” Transactions of the association for computational linguistics, vol. 5, pp. 135–
146, 2017.

[24] M. Nickel and D. Kiela, “Poincaré embeddings for learning hierarchical representations,”
Advances in neural information processing systems, vol. 30, 2017.

[25] M. Gromov, “Hyperbolic groups,” in Essays in group theory, Springer, 1987, pp. 75–263.
[26] N. Linial, E. London, and Y. Rabinovich, “The geometry of graphs and some of its algorithmic

applications,” Combinatorica, vol. 15, pp. 215–245, 1995.
[27] S. Bonnabel, “Stochastic gradient descent on riemannian manifolds,” IEEE Transactions on

Automatic Control, vol. 58, no. 9, pp. 2217–2229, 2013.
[28] E. Choi, M. T. Bahadori, A. Schuetz, W. F. Stewart, and J. Sun, “Doctor ai: Predicting

clinical events via recurrent neural networks,” in Machine learning for healthcare conference,
PMLR, 2016, pp. 301–318.

[29] T. Baumel, J. Nassour-Kassis, R. Cohen, M. Elhadad, and N. Elhadad, “Multi-label classifica-
tion of patient notes a case study on icd code assignment,” arXiv preprint arXiv:1709.09587,
2017.

[30] S.-C. Tsai, T.-Y. Chang, and Y.-N. Chen, “Leveraging hierarchical category knowledge for
data-imbalanced multi-label diagnostic text understanding,” in Proceedings of the tenth in-
ternational workshop on health text mining and information analysis (LOUHI 2019), 2019,
pp. 39–43.

[31] T. Vu, D. Q. Nguyen, and A. Nguyen, “A label attention model for icd coding from clinical
text,” arXiv preprint arXiv:2007.06351, 2020.

[32] P. Cao, Y. Chen, K. Liu, J. Zhao, S. Liu, and W. Chong, “Hypercore: Hyperbolic and co-
graph representation for automatic icd coding,” in Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, 2020, pp. 3105–3114.

[33] C.-W. Huang, S.-C. Tsai, and Y.-N. Chen, “Plm-icd: Automatic icd coding with pretrained
language models,” arXiv preprint arXiv:2207.05289, 2022.

[34] Z. Zhang, J. Liu, and N. Razavian, “Bert-xml: Large scale automated icd coding using bert
pretraining,” arXiv preprint arXiv:2006.03685, 2020.

[35] J. Lee, W. Yoon, S. Kim, et al., “Biobert: A pre-trained biomedical language representation
model for biomedical text mining,” Bioinformatics, vol. 36, no. 4, pp. 1234–1240, 2020.

[36] Y. Gu, R. Tinn, H. Cheng, et al., “Domain-specific language model pretraining for biomedical
natural language processing,” ACM Transactions on Computing for Healthcare (HEALTH),
vol. 3, no. 1, pp. 1–23, 2021.

[37] P. Lewis, M. Ott, J. Du, and V. Stoyanov, “Pretrained language models for biomedical
and clinical tasks: Understanding and extending the state-of-the-art,” in Proceedings of the
3rd Clinical Natural Language Processing Workshop, Online: Association for Computational
Linguistics, Nov. 2020, pp. 146–157. doi: 10.18653/v1/2020.clinicalnlp-1.17. [Online].
Available: https://aclanthology.org/2020.clinicalnlp-1.17.

[38] F. Sala, C. De Sa, A. Gu, and C. Ré, “Representation tradeoffs for hyperbolic embeddings,”
in International conference on machine learning, PMLR, 2018, pp. 4460–4469.

[39] J. Jain, “Implementing poincarre embeddings,” [Online]. Available: https://rare-technologies.
com/implementing-poincare-embeddings/.

https://doi.org/10.18653/v1/2020.clinicalnlp-1.17
https://aclanthology.org/2020.clinicalnlp-1.17
https://rare-technologies.com/implementing-poincare-embeddings/
https://rare-technologies.com/implementing-poincare-embeddings/

BIBLIOGRAPHY 37

[40] A. Gu, F. Sala, B. Gunel, and C. Ré, “Learning mixed-curvature representations in product
spaces,” in International conference on learning representations, 2018.

[41] C. Fellbaum, WordNet: An electronic lexical database. MIT press, 1998.
[42] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling with Large Corpora,”

English, in Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks,
http://is.muni.cz/publication/884893/en, Valletta, Malta: ELRA, May 2010, pp. 45–
50.

http://is.muni.cz/publication/884893/en

	Front matter
	Title page
	Abstract
	Introduction
	Medical coding
	ICD codes
	CPT codes

	Medical coding in practice
	The need for Automated Medical Coding
	Goal

	Datasets
	MIMIC
	MIMIC-III
	MIMIC-IV
	Preprocessing

	Qantev's partner data

	Background on Automated Medical Coding
	Background on NLP
	Background on hyperbolic embeddings
	Geometry concepts
	Hyperbolic geometry

	Background on applications to medical codes
	Own contribution

	Automated Medical Coding
	PLM hierarchical framework
	PLM : Pretrained Language Model with segment pooling
	Label wise attention
	Hierarchical embedding

	Experiments
	Practical settings
	Results

	Hyperbolic embedding
	Poincaré model
	Optimisation
	Experiments
	Technical implementation
	Results

	Potential use besides Automated Medical Coding

	Conclusions
	Bibliography

